GIS and Remote sensing in geology

Karel Martínek Czech Geological Survey Charles University in Prague

•GIS and Remote sensing in geology course outline

- Introduction to Geoinformation systems (GIS) and Remote sensing (RS)
- Remote sensing basic principles
- Radar images and applications
- Image analysis
- Image interpretation
- Case studies

Geoinformation systems (GIS)

GIS combines various information on the area of interest and thus enables to better insight/ understanding of the site

Data types

- Vector
- Raster (grid)
- Text and spreadsheet
- Pictures … any database data

Raster data

- Cell basic object and geometric element
- 2D pixel (picture x element)
- 3D voxel (volume x element)
- Important is spatial resolution (cell size)
- Topology is simple (4/8 neighbour cells)

Reality - Hydrography

Reality overlaid with a grid

- 0 = No Water Feature
- 1 = Water Body
- 2 = River

Resulting raster

Raster data

• Spatial resolution

Vector plus/minus

Advantages

Disadvantages

- good presentation of features
- compact data
- good quality graphic representation
- operations using topology
- small data volume
- accurate geometric transformations (map projections)

- more complex data structure
- complexity of calculations of analytic operations
- not suitable for continuous surfaces
- high software requirements

Raster plus/minus

Advantages

Disadvantages

- simple data structure
- easy combination with inaccurate other data (remotely sensed data – images, digital elevation models (DEMs))
- easy calculations of analytic operations
- relatively low software requirements

- high data volumes
- calculations of length and area
- . lower quality of graphic outputs
- low level of topology
- inaccurate geometric transformations (map projections)

RS – Remote sensing

- images raster data
- airborne, satellite, other
- panchromatic, colour visible range (VIS), very near infrared (VNIR), short wave IR (SWIR), thermal IR (TIR), radar microvawe
- analog vs. digital GIS

The depth of penetration of geophysical

sensors

Surface	0	Technique	Platform	Property
of the Earth	10 ⁻⁹	Geology	Ş	Lithology, structure
	10 ⁻⁶	Spectral]	Mineralogy,vegetation
Depth of	10 ⁻³	Radar (SAR)		Rugosity
Penetration log (m)	10 ⁰	Gamma Rays	\neq	U,K,Th
		Radar (GPR)	Ş	Electrical Properties
Satellite Airborne Surface	10 ⁺³	Electromagnetics	≬ →	Electrical Properties
		Magnetism	≬ →	Magentic petrophysics
	10 ⁺⁶	Seismology	Ş	Elasticity
		Gravity	≬ →	Density
11/5/2015				

17.8.2002

